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SUMMARY

Adjoint methods are a computationally inexpensive way of deriving sensitivity information where there
are fewer dependent (cost) variables than there are independent (input) variables. Automatic di�erenti-
ation (AD) software makes it possible to create discrete adjoint codes with minimal human e�ort, an
issue that had previously restricted acceptance of adjoint CFD codes. In terms of computational perfor-
mance, automatic code is often assumed to be inferior to hand code. The structure of the underlying
code is critical to the performance of the transformed code. This paper reviews the implementation
of AD on Fortran CFD codes and gives details of how small rearrangements can be used to produce
competitive tangent and adjoint code using source transformation AD. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Sensitivity information in computational �uid dynamics (CFD) is useful for a number of
purposes, including design optimization, mesh adaptation and �ow control. In these examples,
there are usually many more input parameters (e.g. design variables) than there are cost
functionals (e.g. lift, drag) and adjoint methods compute the sensitivity information at a much
lower computational cost than conventional state-gradient-based methods such as a tangent
linearization or a �nite di�erence.
Adjoint methods were introduced to aerodynamic design by Pironneau [1] and extended to

whole-aircraft con�gurations by Jameson [2]. These early implementations made use of the
continuous approach [3]. In the alternative discrete approach [4, 5], the adjoint code is derived
via the chain-rule directly from the primal code. This simpli�es many of the implementation
issues (e.g. weak adjoint boundary conditions) and, since the system eigenvalues of the pri-
mal, linear and adjoint codes are identical, convergence of the primal solution guarantees
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convergence of the linear and adjoint solutions [6]. On the other hand, the task of applying
the chain-rule to a long primal code is very tedious and error-prone.
Automatic di�erentiation (AD) [7] can be used to perform much of the primal code di�er-

entiation and has the potential to allow a more widespread employment of adjoint methods. Its
use on CFD code is described in, e.g. Reference [8]. Unfortunately, automatic code is often
thought of as inferior to hand-written code because it cannot exploit some of the e�ciency
measures that could be made manually. This paper contributes to the progress of adjoint CFD
codes by showing how the latest AD tools can be used to obtain tangent and adjoint CFD
code that is equivalent to hand-written code in terms of computational performance. Four
major source transformation packages (Adifor [9], TAF=TAMC [10] and Tapenade [11]) are
applied to 2D Euler and 3D Navier–Stokes CFD codes and compared to hand-written code.
Typical performance impediments of AD are outlined, as well as the steps that can be taken
to avoid them.

2. DISCRETE ADJOINTS

AD is used to derive tangent and adjoint CFD code using the primal �ow solver as its input.
The following analysis is based on an explicit �nite volume method for the Euler and Navier–
Stokes equations. The primal equations can be written with local timestepping for convergence
to the steady state as

@W
@t
+ R(W )=0 (1)

where W is the vector of �ow variables and the residual R incorporates the spatial discretiza-
tion terms.
The sensitivity of a cost functional L(W; �) with respect to � is
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d�
=
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+ gTu (2)

where � is some design parameter (e.g. angle of attack). The derivatives @L=@� and
g=(@L=@W )T are easy to compute [12]. The �ow perturbation, u= @W=@�, is derived from
the tangent linearization for a steady solution of Equation (1):

R(W; �)=0;
@R
@W

@W
@�

=−@R
@�
; Au=f (3)

in which A is the Jacobian of the residual vector, A= @R=@W , and f is the sensitivity of the
residual with respect to the design parameter, f=−@R=@�. The tangent linear system is solved
with an iterative loop in a manner similar to that for the primal code. In tangent mode, AD
produces code to compute the product Au, given the primal residual routine as its input.
The adjoint problem is de�ned as

(
@R
@W

)T
v=

(
@L
@W

)T
; ATv= g (4)
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in which v= @L=@R and can be interpreted as a Lagrange multiplier [13]. The adjoint system
is again solved with an algorithm similar to the primal, where the timestep reverses to take
account of the adjoint direction [14].
The adjoint sensitivity is shown to be identical to the tangent method by combining

Equations (2) and (3)

dL
d�
=
@L
@�

− gTA−1f (5)

where the associativity property of matrix multiplication is exploited such that one can choose
to compute gTA−1f either by evaluating A−1f and then multiplying by gT (tangent method,
Equation (3)) or evaluating gTA−1 and then multiplying by f (adjoint method, Equation (4)).
AD is used in reverse mode to derive the code for ATv.
As the number of design variables usually exceeds the number of cost functionals by

a signi�cant margin, each new design variable (which implies a new f) requires another
tangent linear solve, whereas the expense of the adjoint method remains almost constant for
a �xed number of functionals.
Implementation issues. AD can be used on codes of any length [15]. Some prepara-

tion is usually required, e.g. to remove non-standard constructs. Weak boundary conditions
can be treated automatically by the AD software. Treatment of strong boundary conditions
and validation are discussed in Reference [3]. The source terms f and g are also derived
using AD.

3. PERFORMANCE RESULTS

AD transformations (i.e. the tangent or adjoint code that is generated by source-to-source AD)
would ideally deliver a computational performance that is equal to or better than that of hand-
written sensitivity code. Unfortunately, one is not always able to exploit e�ciency measures
of adjoint and tangent codes when using AD in the way that is possible when writing the
code by hand.
There are already several algorithms used by AD to improve the quality of the data depen-

dency analysis for recomputation [16] and storage [17] of required variables in reverse-mode
transformations. However, it is possible to identify particular constructs in the primal that
result in transformations where the runtime and memory demand of the sensitivity code is
signi�cantly increased compared to hand coding, despite the fact that the speci�c constructs
have minimal impact upon the runtime of the primal itself. The unfavourable primal constructs
can usually be re-written in a way that avoids the poor transformation. In other cases, it is
possible to edit the transformed code to alter or remove parts that are not a direct consequence
of the construction of the primal, an ‘inadmissible’ rearrangement (because the derived code
is no longer truly automatic). This inadmissible modi�cation could be made with a post-
processing script or included as an option in the AD software. It is possible for the AD tools
to be modi�ed by the developers and, by quantifying the performance improvement from each
rearrangement, it is possible to prioritize the most pro�table modi�cations.
Code performance is measured on three platforms. The �rst is a 1:5 GHz Intel Itanium 2

machine (3MB cache), where the code is compiled using the HP f90 compiler (V 2.7.2). The
second is a 2:4 GHz Intel Xeon (512 KB cache) and third a 1:2 GHz AMD Athlon machine
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Table I. The absolute runtime (seconds) for the primal and the relative runtimes for the sensitivity code.
Light �gures refer to the untuned times and bold �gures to the tuned times.

2D code 3D code

Itanium 2 Xeon Athlon Itanium 2 Xeon Athlon

Primal (runtime) 37.5 33.9 49.9 47.2 65.2 64.8 104.4 108.9 315.0 310.4 521.8 516.4

Tangent (ratio)
Hand 2.43 2.33 2.24 1.88 1.20 1.13
Adifor 2 2.12 2.12 2.62 2.52 2.43 2.39 4.59 3.84 1.71 1.62 1.68 1.66
TAF 4.54 2.27 2.99 2.23 2.86 2.10 4.35 3.83 1.25 1.21 1.18 1.17
Tapenade 1.87 1.96 2.58 2.32 2.22 2.17 4.14 3.97 2.14 2.10 1.89 1.87
Adjoint (ratio)
Hand 2.24 2.65 2.35 1.73 1.19 1.16
TAF 8.14 2.46 4.09 2.92 3.77 2.65 3.97 3.62 1.25 1.21 1.26 1.22
Tapenade 11.53 8.28 12.02 3.79 8.82 3.14 28.03 3.41 11.64 1.99 10.16 1.62

(256 KB cache). The code for the second and third platforms is compiled using the Intel
Fortran Compiler (V 7.1). The highest level of compiler optimization is used for both the
primal and transformed code unless otherwise stated. Version numbers of the AD tools are
as follows: Adifor 2.0D, TAF 1.4.20, TAMC 5.3.2 and Tapenade 2.0.4. Where appropriate,
the AD tools are con�gured to produce the most e�cient code possible.
Runtime performance is measured by looping over the primal, tangent and adjoint �uxes

of 2D and 3D CFD codes. The 2D �ux comprises an inviscid �ux calculation with Roe
dissipation [18]. The 3D code comprises an inviscid �ux with a Spalart–Allmaras turbulence
calculation [19]. The subroutine inputs are �lled with random data and veri�ed to machine-
level precision. The time was recorded using the Fortran utility outlined in Reference [20]
and averaged over six independent executions.
The results in Table I show that the performance of AD generated code is highly sensitive

to small changes in the primal. Without any rearrangements, tangent mode transformations
are usually competitive with the hand code on the Xeon and Athlon processors. Runtimes
are more varied on the Itanium 2, where Tapenade generally outperforms Adifor and TAF.
On the 2D code, Tapenade code even outperforms hand-written code with a ratio of 1.87
compared to 2.43 for hand code.
Further investigation into the poor performance of the automatic 3D code on the Itanium 2

processor suggests a cache-related issue. When the prefetch option on the HP compiler is
switched o� (it is on by default with the highest optimization setting), runtimes of the hand-
written codes are increased signi�cantly. The primal code, for example, increased from 109 to
253 s. Runtimes of the automatic code, however, are una�ected. Ratios of the AD code there-
fore decrease correspondingly and are similar to those from the Xeon and Athlon processors.
The ratio of tangent mode Tapenade, for example, decreases from 3.97 to 1.70.
On the other hand, reverse mode transformations are disappointing, particularly on the 2D

code (all platforms=all AD) and 3D code produced by Tapenade. (Note that Adifor 2 does not
support reverse mode.) The de�cits compared to hand adjoint code can be reduced with code
tuning. For TAMC=TAF, the most important rearrangement is to replace all non-continuous
intrinsic functions (e.g. min, max and abs) with an appropriate if..then..else construct
(Table II). Without the rearrangement, TAF and TAMC use the sign intrinsic in order to
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Table II. Replacing a max with an if..then..else construct
for TAF=TAMC.

Original Modi�ed

x = max( a, b ) if ( a > b ) then
x = a

else
x = b

end if

Table III. Replacing an if statement with a full if..then..else con-
struct to reduce the number of store=recall calls in Tapenade code.

Original Modi�ed

x = a if ( b > c ) then
if ( b > c ) x = b x = b

else
x = a

end if

Table IV. Reducing overwritten variables in a do loop for reverse mode Tapenade.

Original Modi�ed

subroutine TOP (x, y) subroutine NEW OUTER (x, y)
do nNode = 1, mNode do nNode = 1, mNode

: call NEW TOP (x(nNode), y(nNode))
y(nNode) = a * x(nNode) end do

end do

subroutine NEW TOP (x, y)
:
y = a * x

evaluate the derivative, exacerbating the runtime penalty of using a non-continuous intrinsic
function. In one case, a runtime improvement of 76% is achieved. TAF (from version 1.4.28)
now inserts this replacement automatically, a manual alteration is still necessary for TAMC.
The 2D code is particularly sensitive to this rearrangement because of the high concentration
of min, max and abs functions (7 intrinsics within 140 lines of code) compared to the 3D code.
Reverse mode Tapenade code is improved by avoiding as many of the store=recall functions

(used by its storage approach) as possible. Several di�erent rearrangements of the primal can
be used to achieve this, all of them based upon a strategy of eliminating overwritten variables
in the code that is submitted to Tapenade. In some cases, the overwritten variables are simple
to spot, e.g. if a variable tmp is re-used, replace each use with tmp1, tmp2.... There are
other short examples where an overwritten variable is not so obvious (e.g. an if statement,
see Table III). Another more general rearrangement is to move a do..end do loop outside of
the code that is submitted to Tapenade (see Table IV). This results in a major improvement
in runtime and memory performance for the 3D code. In this example, memory demand is
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Table V. Performance improvements by not recomputing the dependent variables. The left columns
refer to code that recomputes the dependent variables and the �gures on the right are from the pure

code. Figures in bold are di�erentiated automatically and �gures in brackets are inadmissible.

3D code

Itanium 2 Xeon Athlon

Adifor tangent (modi�ed) 4.59 (4.49) 1.71 (1.19) 1.68 (1.16)
TAF tangent (-pure) 4.39 4.35 1.75 1.25 1.72 1.18
Tapenade tangent (modi�ed) 4.14 (1.99) 2.14 (1.62) 1.89 (1.51)

Table VI. Runtime performance of a full 2D CFD code using original and tuned TAF tangent and
adjoint �uxes on the Xeon processor.

Full code Fluxes

Primal (runtime) 298.3 49.9
Tangent (ratio) 2.54 2.16 2.99 2.23
Adjoint (ratio) 2.98 2.64 4.09 2.92

reduced by about 15%. The rearrangement in Table IV is possible because the do loop is
self-adjoint: the order in which the primal, tangent or adjoint codes loop over the mesh is not
important. With the original routine, Tapenade is obliged to store all overwritten variables in
a forward sweep of the loop (i.e. 1→mNode) before reversing the loop (mNode→1). With the
modi�ed code, however, there is only one assignment for y and hence Tapenade does not
invoke a store=recall.
A further reduction in runtime is achieved by replacing the generic store=recall function

(written in c++) with a customized routine written in Fortran 77, enabling greater compiler
optimization.
Pure di�erentiation. If the primal and adjoint codes are to be converged simultaneously,

then the transformed routines must include the code to compute the dependent (output) primal
variables. However, there are many cases where this is inappropriate. By default, all of the AD
tools tested here include code for the recomputation of dependent variables. Only TAF and
TAMC include an option (-pure) to exclude the dependent evaluations. Although the runtime
penalty for this might at �rst seem small, it has a knock-on e�ect for the recomputation
or storage of required variables. Table V shows the runtime di�erence for tangent mode
transformations on the 3D code.
Full CFD code. In order to con�rm that runtime improvements in the tangent and adjoint

�uxes contribute signi�cantly to an improvement in a full CFD code, the original and tuned
TAF transformations were applied to the 2D code (Table VI). The results demonstrate the fact
that the majority of runtime in a CFD code is spent in the �ux calculation and the remainder
of a tangent or adjoint CFD code (e.g. update routine) is very similar to the primal code.

4. CONCLUSIONS

Discrete tangent linear and adjoint codes can be derived manually and are e�cient in terms
of computational expense but extremely ine�cient in terms of human e�ort. AD can be used
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to derive the sensitivity code with minimal human e�ort, but a computational penalty is
usually expected. With careful preparation, following the basic rules outlined in this paper,
it is possible to use AD to generate code that is computationally almost as e�cient as hand
code but with much less human e�ort. AD can then be used to propagate development of the
primal through to the tangent and adjoint codes at almost no additional expense.
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